深度神经网络(DNN)需要大量数据来学习。安防解决方案本身不是“智能的”;他们利用对情景意识报告(sitrep)和历史数据的深度学习来采取最适当的措施。来自多种格式(可见光、红外、音频、激光)的传感器的数据以及来自环境、社交媒体、犯罪数据集的复杂数据变得越来越庞大,无法通过传统的操作程序进行处理。幸运的是,像ESRI这样的公司提供了链接犯罪、位置和时间的数据集。实际上,现在可以通过灾难响应计划(DRP)免费获得其ArcGIS Insights,以分析COVID-19大流行的影响。
隐私权和数据保留政策确实对某些行业AI解决方案提出了挑战,例如,防止零售业亏损DNN可能需要“回顾”几天的差异视频内容,或者场景中的内容,如在人群移动,产品差异、照明条件等,以“识别”规划,执行和离开商店盗窃现场的人员的基本行为。
随着行业的发展,企业安全和第一响应者可以获取、分析和预测潜在结果并共享数据,以使AI最终执行已学到的基本任务,并为我们提供做出关键决策所需的人力。
“摄取”对于安全行业中的某些人来说可能是一个新术语,但在依赖“大数据”或应用数据科学的市场中使用得很好。为了使您的客户能够利用当今的AI解决方案(尤其是视频监控),开始在周边范围内收集高质量的视频内容以更好地保证质量警报处理和响应将是非常有利的。
人工智能(AI)执行服务、识别模式、学习对象与情况之间的关系并做出决策。新的成熟的技术(例如5G、热效率高、低功耗的AI芯片组和AI本身)提供了一种范式转变,推动了全球监视和IoT传感器市场的发展。
当我们要求语音助手搜索我们最喜欢的节目时,我们通常会首先得到我们想要的选择。车辆制造商正在开发先进的驾驶员辅助系统(ADAS),例如自动紧急制动(AEB),其目标是创建避免与行人和骑车者碰撞的发生。幸运的是,安防行业承担的任务不那么紧急重要,例如识别对象、潜在威胁和适当的威慑响应。
幸运的是,我们的行业正在利用更高效的AI芯片组和Edge AI传感器(如LiDAR和热成像)的可用性,所有这些产品的价格都在下降。具有改进的热管理功能的AI芯片组,例如在CES 2021上推出的Ambarella CV5,支持四个独立的4K视频流、AI功能、低功耗5nm工艺。这将是在流式传输和识别过程争夺资源的情况下,在多个车道中产生“不连贯”视频的动力不足的IP摄像机处理车辆自动车牌识别(ANPR)的答案。