特斯拉的纯视觉传感器方案的实现

   2021-11-25 工业品商城208
核心提示:特斯拉的纯视觉传感器方案的实现,离不开多任务学习HydraNets神经网络架构。每辆特斯拉汽车拥有8个环绕车身、覆盖周围360的摄像头,来获取交通信号灯、信号牌、匝道、路缘等周边信息,为神经网络学习提供了较佳条件。  Andrej说:我们希望能够打造一个类似动物视觉皮层的神经网络连接,模拟大脑信息输入和输出的过程。就
       特斯拉的纯视觉传感器方案的实现,离不开多任务学习HydraNets神经网络架构。每辆特斯拉汽车拥有8个环绕车身、覆盖周围360°的摄像头,来获取交通信号灯、信号牌、匝道、路缘等周边信息,为神经网络学习提供了较佳条件。
  Andrej说:“我们希望能够打造一个类似动物视觉皮层的神经网络连接,模拟大脑信息输入和输出的过程。就像光线进入到视网膜当中,我们希望通过摄像头来模拟这个过程。”
  多任务学习HydraNets神经网络架构可以将8个摄像头获取的画面拼接起来,并平衡视频画面的延迟和精准度。通过人工或自动标注车道、车辆、信号灯、障碍物等环境和动静物体,系统会逐帧分析视频画面,了解物体的纵深、速度等信息,再将这些数据交给车队学习。
  但是在这个过程中,特斯拉发现了几个问题:这些参数和空间追踪是很难通过C++这个基础架构实现拼接的;有一些空间数据的输出质量不高;不同摄像头获取的物体信息不同,拼合时很难进行整体把握。
  为解决这些问题,特斯拉开发了“矢量空间”(Vector Space)技术,同时兼具了非凸优化算法(Non-convex)、高维度两大优势。该技术可以通过8个摄像头输入的数据为基础绘制3D鸟瞰视图,形成4D的空间和时间标签的“路网”以呈现道路等信息,帮助车辆把握驾驶环境,更精准的寻找最优驾驶路径。
  有了海量、精准的视频数据,特斯拉还需要创造一个强大的神经网络,并对网络进行特殊的布局,使这些数据能在一个总的主干网络上进行整合和重新分析。因此,特斯拉“高楼平地起”,自主研发了基于神经网络的训练方式。
  特斯拉拥有一支由世界各地人才组成的数据标注团队,规模在1000人左右。团队每天对视频数据中的物体在“矢量空间”中进行标注,在善于把握细节的人工标注和效率更高的自动标注配合下,只需要标注一次,“矢量空间”就能自动标注所有摄像头的多帧画面。这为特斯拉带来了上百亿级的有效且多样化的原生数据,而这些数据都会用于神经网络培训。
  同时,特斯拉还开发了“仿真场景技术”,可以模拟现实中不太常见的“边缘场景”用于自动驾驶培训。在仿真场景中,特斯拉工程师可以提供不同的环境以及其他参数(障碍物、碰撞、舒适度等),极大提升了训练效率。
  由此,特斯拉FSD系统已可以实现每1.5毫秒2500次搜索的超高效率,预测可能出现的各种情况,并在其中找到安全、舒适、快速的自动驾驶路径。
  当下,随着所需处理的数据开始指数级增长,特斯拉也在提高训练神经网络的算力,因此,便有了特斯拉Dojo超级计算机。
  特斯拉的目标是实现人工智能训练的超高算力,同时还要扩展带宽、减少延迟、节省成本。这就要求Dojo超级计算机的布局,要实现空间和时间的最佳平衡。
  组成Dojo超级计算机的关键单元,是特斯拉自主研发的神经网络训练芯片——D1芯片。D1芯片采用分布式结构和7纳米工艺,搭载500亿个晶体管、354个训练节点,仅内部的电路就长达17.7公里,实现了超强算力和超高带宽。
  1500个D1芯片共53万余训练节点,组成了Dojo超级计算机的训练模块。由于每个D1芯片之间都是无缝连接在一起,相邻芯片之间的延迟极低,训练模块大程度上实现了带宽的保留,配合特斯拉自创的高带宽、低延迟的连接器,算力高达9PFLOPs(9千万亿次)。
  得益于训练模块的独立运行能力和无限链接能力,由其组成的Dojo超级计算机的性能拓展在理论上无上限,是个不折不扣的“性能野兽”。实际应用中,特斯拉将以120个训练模块组装成ExaPOD,它是世界上较佳的人工智能训练计算机。与业内其他产品相比,同成本下它的性能提升4倍,同能耗下性能提高1.3倍,占用空间节省5倍。
  与强大硬件相匹配的,是特斯拉针对性开发的分布式系统——DPU(Dojo Processing Unit)。DPU是一个可视化交互软件,可以随时根据要求调整规模,高效地处理和计算,进行数据建模、存储分配、优化布局、分区拓展等任务。
  不久后,特斯拉即将开始Dojo超级计算机的首批组装,并从整个超级计算机到芯片、系统,进行更进一步的完善。
 
 
 
更多>同类新闻资讯
推荐图文
推荐新闻资讯
点击排行

新手指南
采购商服务
供应商服务
交易安全
关注我们
手机网站:
新浪微博:
微信关注:

周一至周五 9:00-18:00
(其他时间联系在线客服)

24小时在线客服