顾名思义,半导体即常温下导电性能介于导体与绝缘体之间的材料,早在1833年电子学之父法拉第就发现了半导体现象,从第一代到第三代,半导体的材料在更新换代,其应用领域也越来越广。
第一代半导体材料在20世纪50年代出现,以硅、锗为代表,构成了一切逻辑器件的基础,主要用于分立器件和芯片制造。第二代半导体材料,发明并实用于20世纪80年代,主要是指化合物半导体材料,以砷化镓、磷化铟为代表。第二代半导体在发电率上有所突破,因此用于制作高速、高频、大功率以及发光电子器件,广泛应用在微波通信、光通信、卫星通信、光电器件、激光器和卫星导航等领域。
本世纪初期,第三代半导体的探索之路逐渐开始,涌现出了碳化硅、氮化镓、氧化锌、金刚石、氮化铝等具有宽禁带特性的新兴半导体材料,因此也被称为宽禁带半导体材料。第三代半导体材料广泛用于制作高温、高频、大功率和抗辐射电子器件,应用于半导体照明、5G通信、卫星通信、光通信、电力电子、航空航天等领域。
雾计算旨在解决困扰集中式云计算系统的延迟问题。消费者和企业之间物联网设备和技术的发展给云计算资源带来了压力。数据中心是云端,距离数据源(物联网设备)太远,将信息和数据传输到数据中心进行分析会导致延迟,使得物联网技术的灵活性降低。
通过收集更接近数据源的信息进行实时分析,雾计算可以改进数据分析。不需要立即采取行动的数据可能仍会上传到云端进行长期存储和分析。让我们仔细看看雾计算的基本思想以及它如何使公司受益。
雾计算利用雾节点,这是小型的本地设备。物联网信标收集数据。该数据被传输到位于数据源附近的雾节点。雾节点在本地对数据进行分析、过滤,然后在需要时将其发送到云端进行长期存储。
雾节点可以是任何具有计算、存储和网络连接的设备。物联网设备和边缘计算资源收集的数据不会被路由到云端,而是被发送到本地雾节点。与将请求发送回数据中心进行分析和操作相比,使用更靠近数据源的雾节点可以加快数据处理速度。
在5G和新能源汽车等新市场需求的驱动下,第三代半导体材料有望迎来加速发展。硅基半导体的性能已无法完全满足5G和新能源汽车的需求,因此,碳化硅和氮化镓等第三代半导体的优势被放大。
在新能源汽车领域,碳化硅器件主要可以应用于功率控制单元、逆变器、车载充电器等方面。碳化硅功率器件轻量化、高效率、耐高温的特性能够有效降低新能源汽车的成本。
以Model 3搭载的碳化硅功率器件为例,其轻量化的特性能够节省电动汽车内部空间,高效率的特点有效降低了电动汽车电池成本,同时材料耐高温的优势降低了对冷却系统的要求,节约冷却成本。
在轨道交通领域,碳化硅器件能大幅提升牵引变流装置的效率,符合轨道交通绿色化、小型化、轻量化的发展趋势。近日完成调试的苏州3号线0312号列车是国内首个基于碳化硅变流技术的牵引系统项目,采用碳化硅半导体技术,在提高系统效率的同时降低了噪声,提升了乘客的舒适度。
氮化镓半导体具备导通电阻小、损耗低以及能源转换效率高等优点,由氮化镓制成的充电器还可以做到快速充电。安卓端率先将氮化镓技术导入到快充领域,随着氮化镓生产成本迅速下降,氮化镓快充有望成为消费电子领域下一个杀手级应用。2020年2月,小米推出65W氮化镓充电器,体积比小米笔记本充电器缩小48%,并且售价创下业内新低。随着氮化镓半导体技术逐步提升,规模效应会带动成本越来越低,未来氮化镓充电器的渗透率会不断提升。