常用的装配机器人主要有可编程通用装配操作手PUMA机器人(最早出现于1978年,工业机器人的祖始)和平面双关节型机器人,即SCARA机器人两种类型。与一般工业机器人相比,装配机器人具有精度高、柔顺性好、工作范围小、能与其他系统配套使用等特点,主要用于各种电器的制造行业。
美国Unimation公司1977年研制的PUMA是一种计算机控制的多关节装配机器人。一般有5或6个自由度,即腰、肩、肘的回转以及手腕的弯曲、旋转和扭转等功能。其控制系统由微型计算机、伺服系统、输入输出系统和外部设备组成。采用VALⅡ作为编程语言,例如语句“APPRO PART,50”表示手部运动到PART上方50mm处。PART的位置可以键入也可示教。VAL具有连续轨迹运动和矩阵变换的功能。
大量的装配作业是垂直向下的,它要求手爪的水平(X,Y)移动有较大的柔顺性,以补偿位置误差。而垂直(Z)移动以及绕水平轴转动则有较大的刚性,以便准确有力地装配。另外还要求绕Z轴转动有较大的柔顺性,以便于键或花键配合。其控制系统也比较简单,如SR-3000机器人采用微处理机对θ1、θ2、Z 三轴(直流伺服电机)实现半闭环控制,对s轴(步进电机)进行开环控制。编程语言采用与 BASIC相近的SERF。最新版本Level4具有坐标变换、直线和圆弧插补、任意速度设定、以文字命名的子程序以及检错等功能。SCARA机器人是目前应用较多的类型之一。
为满足快速迭代的用户需求,软件定义汽车已成为行业共识,被认为是相关企业赢得未来的关键转型方向。而要做到这一点,计算平台,尤其是集中化的计算平台十分关键。
近日,在由盖世汽车举办的2021智能汽车域控制器创新峰会上,上汽零束软件分公司基础软件平台专家曾杰男表示,智能汽车如今面临三方面需求:满足千人千面的用户需求,用户体验持续进化以及车辆主动感知、主动决策。
而要满足这三个需求,曾杰男认为,其中一大关键便是,在硬件层面实现分布式到中央集中式的转变,要有一个中央集中式计算平台提供算力基础。“硬件给我们提供了算力基础,让我们有可能在上面做更多的算法,去做更多的功能。”
华为智能汽车解决方案BU MDC解决方案部部长毕舒展亦在此次峰会演讲中指出,智能化的发展提出了很多技术挑战,其中汽车上的应用软件将是SOA架构(面向服务的架构)的,它的特点是解耦、模块化、灵活部署,上层软件的特点是更新快,满足终端用户需求,同时体验和功能需要快速迭代。
当然,问题的关键是,要有一个坚实的智能驾驶计算平台底座,上层应用软件才能提供更好更快的迭代。毕舒展表示,要想实现上层软件SOA架构的发展,底层需要集中化计算平台,在当前阶段以域集中的ZOA架构(平台硬件集中化的架构)为主。
岚图汽车科技有限公司自动驾驶算法研发总监刘会凯持有同样的观点。他在演讲中提到,软件定义汽车的实施使得车辆的使用体验得以提升,也能让车辆生命周期得到延长,另外随着这台车的使用时间越来越长,也能让这台车的个性化程度越来越高,“而实现软件定义汽车的核心,最重要一关就是集中控制器,或打造一个高集成化的计算平台来支撑以上理念。”
由此来看,软件定义汽车时代,计算平台需走向集中化,其重要性已为诸多企业所知。正如国汽智控(北京)科技有限公司副总裁杨柯在此次峰会演讲中所说,计算平台已成为新一轮技术竞争的焦点。
没有人能否认,算力对于集中式计算平台的重要性。毕舒展在演讲中就明确指出,集中化计算平台的特点之一就是大算力。
在此次域控制器创新峰会上,据湖北芯擎科技有限公司产品规划管理部总经理蒋汉平介绍,在分布式架构中,多数模块化的功能都是通过ECU单元叠加的,是1+1的过程,对于芯片能力要求是比较低的,集中在可靠性和安全性上,MCU要求50 DMIPS(每秒执行百万条整数运算指令数)。现在开始走域控制器,也即把功能安全、信息安全接近的芯片进行一定的融合,形成一个域,在这个域里面做决策,这种情况下MCU达到了2k DMIPS。
域控制器之后是域融合,例如特斯拉有三个域,这种情况下的算力就已经到了SoC级别,算力是5-20K DMIPS。而当下中央计算把大量算力集中起来,把分布式控制放在ECU端,这种情况下算力就接近50-300K DMIPS。
对于计算平台对算力的需求,刘会凯认为,这很大程度取决于感知系统的巨大升级,包括激光雷达、800万摄像头的搭载,另外复杂系统或者SOA架构的实施也对计算平台提出了更高算力需求。据其透露,国内主机厂的智能驾驶感知系统基本上都采用了“激光雷达+毫米波+摄像头”的多种传感器冗余的强感知路线。
“自动驾驶等级每提高一级,对于算力就增加一个数量级,一般认为,L2需要的算力<10TOPS,L3是30-40TOPS,L4是100TOPS以上,目前对于L5所需的算力行业还没有明确定义。”刘会凯指出,目前的计算平台的算力只能支持部分L3、L4开发的需求。
他还提到,在智能驾驶系统的快速开发和功能迭代方面,还面临一些挑战:一、需要处理海量数据,成本较高,单车每月产生的数据量是非常庞大的;二、对于训练和仿真训练及仿真需要强大算力支撑。