在此次域控制器创新峰会上,超星未来联合创始人兼首席技术官梁爽就坦言,现在算力的军备竞赛已经掀起来了,“举例来说,今年英伟达发布业内首款1000TOPS的SoC,这相比特斯拉FSD单芯片算力72TOPS算力提升超过一个数量级。另外我们看到,国内也有超过国外玩家的趋势,比如说地平线J5,最高128TOPS,再如黑芝麻A1000Pro,106TOPS芯片上个月刚刚宣布完成流片。”
从计算平台角度来看,这些芯片的推出为之提供了更丰富和更可靠的选择。不过梁爽提醒道,行业需要思考一个问题,解决智能驾驶系统计算平台的支撑,是否只能通过芯片堆叠来实现?
尽管汽车智能化需要更强的运算能力,但蒋汉平表示:“算力也不能说无限增长,芯片PPA(功耗、成本和面积)都是很要命的。我们以前做芯片的时候很讲究功耗,有些车厂说现在是新能源,你不用担心电的问题,但要知道,即便不用担心电的问题,也还要担心散热等其它问题。所以我们不认为算力无限的膨胀和预埋是未来的趋势,特别是在SoC上,我们需要精准高效的算力来适配电子电气架构的变革。”
梁爽亦指出,芯片的算力本质上对于智能驾驶系统还是必要不充分的条件。“虽然大家都知道实现更好的系统需要更多的算力,但是现在大家更多提的算力是峰值算力。我们经常会看到一个优化程度不好的芯片宣称有10TOPS算力,实际跑出来的应用等效只有3-4TOPS的算力。所以我们认为,计算平台设计不单单是算力问题,而是一个非常复杂的需要进行系统优化设计的问题。
正如前面所说,计算平台要解决的不仅仅是算力问题,除此之外还面临其他方面的挑战。在此次域控制器创新峰会的主题演讲中,长城汽车智能驾驶架构总监董作民就提到,大算力计算平台主要面临四个维度的挑战,分别是功耗、散热、电磁兼容和质量挑战。
其中就功耗而言,据盖世汽车了解,通常情况下,需要更多的算力就需要支付更多的功耗。梁爽指出,车的场景是受限的场景,以L2+域控为例,它的功耗需要控制在30-40瓦范畴之内,即便上水冷把功耗放到大几百瓦、上千瓦,对于电池作为动力能量源的车辆来说,对续航影响也是非常明显的。
基于此,梁爽表示:“做计算平台本质上是硬件和功耗等资源受限条件下优化的问题,有点像带着镣铐跳舞的状态。我们面临着越来越复杂的系统,还需应对越来越复杂且快速迭代的传感器,手头有的其实是受限的资源,如何让计算平台方便部署、高能效以及安全可靠非常重要。”
毕舒展同样认为计算平台面临着诸多挑战。他坦言,计算平台,特别是面向L2到L5的计算平台,相对于传统的ECU在硬件工程、软件工程领域实现了10-100倍级的挑战。
举例来说,当芯片算力为200TOPS到400TOPS,功率从100到300瓦左右,这意味着其在散热方面面临较大的挑战,另外在液冷防凝露、EMC复杂环境等工程问题上也面临巨大挑战。
软件工程也将面临很多问题,比如说基于不同的上层支持SOA调度系统,周边服务化形式怎么解耦?数据面和管理面怎么解耦、怎么隔离?操作系统怎么实现确定性低时延等?
此外还有安全方面的挑战。“除了汽车界所熟知的主动安全和被动安全等功能安全要求之外,还有网络安全,智能网联汽车随时随地在联网,这个时候就随时面临着外界的各种挑战,包括黑客侵入,而这个时候你又会发现除了功能安全之外,信息安全也正面临巨大的挑战。”毕舒展补充道。
通过以上可以看出,计算平台如今确实面临着诸多严峻挑战。那么,相关企业如何应对这些挑战?
针对此,毕舒展在此次峰会演讲中表示,华为可以提供专业化计算平台。据其透露,当前业界有两种平台,一种平台是芯片、硬件、操作系统、中间件可能来自于不同的厂家,即组合平台,而其所说的专业化计算平台则是由一家公司来提供芯片、操作系统、中间件。
关于专业化计算平台的优势,毕舒展指出,如果各个部件来自于不同厂家,在量产过程中遇到问题沟通协调起来是非常困难的,会产生巨大的工作量,效率较低。另外,一旦主机厂来一个新的需求,可能需要操作系统方、中间件方,甚至在芯片层都需要落地,这个周期计划协调起来非常困难,响应周期也要按半年为单位计算,而专业化计算平台各层都是一家提供,不存在这个问题。当然这仅是专业化平台的特征之一。据其介绍,专业化平台还具备高性能、高安全以及快速响应的特征。
据盖世汽车了解,华为可以提供系列化的面向不同场景的产品,其称之为“统一平台架构,系列化硬件,共用一套软件,功能持续迭代”,这种平台支持上层应用平滑升级。具体产品型号有:MDC 810,有400+TOPS的算力,可以满足L2+、L3、L4、L5应用场景;MDC 610,提供200+TOPS的算力,针对L4场景,主要面向于乘用车;MDC 210,有48TOPS的算力,针对L2+场景;MDC 300F,面向商用车场景,比如矿卡、高速物流以及园区。
前面提到,如何实现计算平台方便部署、高能效以及安全可靠十分关键。梁爽认为,应对这样一个难题的技术方式,还要以软硬件协同的手段来实现。
就超星未来而言,其思路是“围绕神经网络计算加速处理为核心,从软件协同的角度上通过模型压缩、结构搜索的方式来优化出甚至设计出对于硬件更为友好的模型,包括除开神经网络之外其他计算进行定制化加速,大幅度降低在CPU这些通用单元的算力开销,缩短计算平台处理的延迟。处理完所有能效优化基础上还会在基础软件环境上去做优化,以及最终有一个异构计算平台把软硬件技术承载起来,开放提供给客户。”