未来汽车传感器技术总的发展趋势是微型化、多功能化和智能化

   2019-08-26 工业品商城153
核心提示:汽车传感器作为汽车电子控制系统的信息源,是汽车电子控制系统的关键部件,也是汽车电子技术领域研究的核心内容之一。未来汽车传

汽车传感器作为汽车电子控制系统的信息源,是汽车电子控制系统的关键部件,也是汽车电子技术领域研究的核心内容之一。未来汽车传感器技术总的发展趋势是微型化、多功能化和智能化。

  LCAS定义了一种可以平滑地改变传送网中虚级联信号带宽的方法,以自动适应有效业务带宽,信令传输由普通的SDH网元和网管系统完成。采用LCAS的最大优点在于有效净负荷可以自动映射到可用的VC上,这意味着带宽的调整是连续的,不仅提高了带宽指配速度,对业务无损伤,而且当系统出现故障时,可以动态调整系统带宽,无须人工介入,还可以在保证服务质量的前提下明显提高网络利用率。

  ASON是智能光网络的控制平面技术,可以动态地实施光层连接建立和管理,使网络具有自动选路和指配功能。若下一代的SDH多业务平台能将上述VC级联,GFPLCASASON几种标准功能集成在一起,再配合核心智能光网络的自动选路和指配功能,则不仅能大大增强自身灵活有效支持数据业务的能力,而且可以将核心智能光网络的智能扩展到网络边缘,增强整个网络的智能范围和效率。

2 40Gbit/s系统的发展,挑战和应用

    微型传感器利用微机械加工技术,将微米级的敏感元件、信号处理器、数据处理装置封装在一块芯片上,由于具有体积小、价格便宜、便于集成等特点,可以明显提高系统测试精度。当前,该技术逐步成熟,可以制作检测力学量、磁学量、热学量等各种微型传感器。微型传感器的大规模应用将不仅限于发动机燃烧控制和安全气囊,在未来几年内,包括发动机运行管理、废气与空气质量控制、ABS、车辆动力的控制、自适应导航、车辆行驶安全系统在内的应用,将为MEMS技术提供广阔的市场。

    在动力系统中,有用来测定各种流体温度和压力(如进气温度、气道压力、冷却水温和燃油喷射压力等)的传感器;有用来确定各部分速度和位置的传感器(如车速、节气门开度、凸轮轴、曲轴、变速器的角度和速度、排气再循环阀(EGR)的位置等);还有用于测量发动机负荷、爆震、断火及废气中含氧量的传感器;确定座椅位置的传感器;在防抱死制动系统和悬架控制装置中测定车轮转速、路面高差和轮胎气压的传感器;保护前排乘员的气囊,不仅需要较多的碰撞传感器和加速度传感器,还需要乘员位置、体重等传感器来保证其及时和准确的工作。面对制造商提供的侧量、顶置式气囊以及更精巧的侧置头部气囊,还要增加传感器。

    近年来从半导体集成电路技术发展而来的微电子机械系统(MEMS)技术日渐成熟,利用这一技术可以制作各种能敏感和检测力学量、磁学量、热学量、化学量和生物量的微型传感器,这些传感器的体积和能耗小,可实现许多全新的功能,便于大批量和高精度生产,单件成本低,易构成大规模和多功能阵列,非常适合在汽车上应用。

    市场研究数据显示,2002年全球汽车传感器的市场规模为70.1亿美元,预计到2005年将达到85.2亿美元,年平均增长率为6.7%;全球2002年汽车传感器的市场需求量为10.38亿只,预计到2005年将达到12.83亿只,年平均增长率为7.3%。和全球范围传感器产业相比,国内汽车传感器尚未形成独立的产业,仍然依附于汽车仪表企业。我国的汽车工业发展加快,估计2010年将达600万辆的生产能力,若每辆车用10只传感器,将需6000万套传感器及其配套变送器和仪表。

    汽车传感器技术的发展方向是开展基础研究,发现新现象,采用新原理,开发新材料,采用新工艺;扩大传感器的功能与应用范围。开发新材料是发展汽车传感器技术的一个重要方向。由于材料科学的进步,在制造各种材料时,人们可以任意控制其成分,从而可以设计与制造出各种用于传感器的功能材料,例如控制半导体氧化物的成分;可以制造出各种气体传感器;光导纤维用于传感器是传感器功能材料的一个重大发现;有机材料作为功能材料,正引起国内外汽车电子化专家的极大关注。

    近年来,汽车用传感器技术发展迅速,趋势是实现多功能化、集成化和智能化。多功能是指一个传感器能检测两个或两个以上参数;集成化是直接利用半导体特性制成单片集成电路传感器,或是将分立的小型传感器制作在硅片上,例如集成化温度、压力传感器及霍尔电路等;智能化是指传感器与大规模集成电路结合,成为带有专用微型计算机的传感器。敏感元件的种类也越来越多,按敏感元件工作原理的不同,传感器大致可分为四大类:电阻型,电磁感应型和霍尔效应型, 光敏晶体型等。随着研究人员用防撞传感器(测距雷达或其他测距传感器)来判断和控制汽车的侧向加速度、每个车轮的瞬时速度及所需的转矩,使制动系统成为汽车稳定性控制系统的一个组成部分。总之老式的油压传感器和水温传感器是彼此独立的,由于有着明确的最大值或最小值的限定,其中一些传感器的实际作用就相当于开关。随着传感器向电子化和数字化方向发展,它们的输出值将得到更多的相关利用。为此,制造商们正在开发和生产更好的传感器。

    离子检测系统:三菱(Mitsubishi电子公司)正在开发一种车用离子检测系统。这个系统能够通过检测离子来监控发动机每个气缸的燃烧情况。当可燃混合气持续燃烧时,在燃烧峰面附近就会发生电离现象。把一个带偏压的测头放入气缸,就可以测出与电离状况相关的离子流。这个能反映发动机各种燃烧状况的信息控制系统由带测头的火花塞、装有测试附件的点火线圈及一套处理离子流信号的电子模块构成,它可以判别每个缸的点火、燃烧及爆震情况。进一步的功能将是对发动机的混合气状况加以监控,即根据离子流所显示的燃烧情况来控制每个缸的空燃比。

    快速起动的氧传感器:冷车运转时的发动机所排放的COHC是最多的,这就要求氧传感器尽快起动进入闭环控制状态。NGK火花塞有限公司研制出一种新型氧传感器,它能在15s内达到闭环控制。通过缩小加热区和降低阻抗,改进了传感器的加热装置。由于采用新材料和新的温控系统,使加热器的寿命与现有类型相近,改善了低温特性。

    侧滑传感器:博世公司开发一种双向传感器,它是由采用压电晶体的线性加速度计组合而成。这样的组合更有利于传感器的设置、信号处理和封装。这种传感器有两个经过显微加工的信号发生器并各自对应着所测加速度方向的基准面,对应于某个基准面的独立信号就能测出相应的作用力。而很高的品质因数Q值使传感器的封装可以在常压下进行。

    压电谐振式角速度传感器:三菱电子公司开发的这种传感器为玻璃一硅一玻璃结构,其谐振部分是一个用浸蚀法制成的硅梁。通过外置振荡器激发,其谐振频率约为4KHz。梁的厚度与硅片相同,它的宽度和长度通过浸蚀加工来决定。硅梁和玻璃支架的连接采用了真空下的阳极焊接工艺,以确保其固有频率变化很小。角速度的变化可根据硅梁振动频率变化引起的梁两侧玻璃支架上金属电极间的电容变化值测出。传感器电路由电容电压(CV)转换器和同步解调器构成。CV转换器是一个转换电容的比较器(ASIC)。当测量范围在±200°/s时,非线性为±1%

    高压传感器:Denso公司开发一种浸入式高压传感器。这些传感器可用来检测机油、液压系统、汽油以及空调制冷剂的压力,如制动器的液压控制系统、怠速下的空调机压缩器和动力转向泵、燃油控制系统、悬架控制系统以及自动变速器中的液压换挡系统。这些系统的压力变化在220MPa,而传感器可耐压38MPa。这种传感器使用一种树脂胶而不是通常使用的金属和玻璃来封装,以形成足够大的油分子通道,实现了外型和元件间封尺寸的优化设计。包括压力感应元件和放大电路在内的所有元件都集中在一块芯片上。

    机油粘度传感器:何时更换机油一般是根据厂家规定的时间或里程来进行。少数厂家采用了更先进的方式,通过记录发动机转速和温度来计算换油间隔。Lucas Varity公司正在研制一种压电振动式粘度传感器,其工作原理与振动式粘度计相近--振子(球型、片状或棒式)在受到粘滞阻尼时其振频会发生衰变。因此,依靠不同形状的振子,就可以测出粘度和密度的一些参数。有一种振动式粘度计的振子是石英棒,它能被激发扭振,通过测量与液体粘度相对应的振幅和谐振频宽,就可以确定粘度(准确地说应是粘度和密度的综合值)。可见,振动式粘度计是通过测量液体所传递的切变波形来确定粘度的一种装置。然而,由于传感元件与液体的接触处切变波形会产生畸变而导致测试值与液体的对应关系较差。

    粘度传感器设置了一种界面来改善传感元件与液体之间的接触关系,传感器的核心是一个压电转换器,在它两侧施加电压时,就会产生切向运动。电极是用金属蒸发沉积法布置在压电晶体表面,然后整体涂上一层绝缘层。一台扫频仪通过振荡器所产生的交变电压来确定传感元件的谐振频率。因为在谐振时,传感元件的电阻达到最大值,随着液体粘度的变化,这个蜂值也相应变化,并通过峰值检测电路转化为电压信号。绝缘层的厚度根据所测粘度的范围来确定,因为从液体界面处反射回来的切变波必须被绝缘层全部吸收,所以绝缘层的厚度大约是四分之一个波长。

    磁敏式速度传感器:SST技术有限公司开发了一种一体化的传感器,它是把高磁阻(GMR)材料与半导体装置合为一体的磁敏式速度传感器。高磁阻材料的特点是随磁场的变化其电阻值也发生变化。半导体装置是由制作在同一块BICMOS电路板上的信号处理器和电压调节器所构成。先将高磁阻材料喷镀在BICMOS板基上,采用光刻腐蚀工艺将其制成电阻,通过铝箔把其连入BICMOS电路,再周边镀上一层合金以聚集磁力线。这种传感器是双极型结构,通过电平转换输出一个方波形脉冲信号,其输出频率与软磁信号轮齿的回转频率是相同的,而励磁机构是一块永久磁铁。由于传感器的信号处理电路是直流耦合式,所以可处理零速状态。而其具有高灵敏度使之在较大气隙下也能工作。采用上述技术的ABS传感器具有零速处理、输出信号在两电平之间变化的双极型结构,脉冲频率与信号轮齿或磁极的回转频率相同的特点。在允许温度和工作频率范围内,其频宽比为(50±10)%,轮齿模数2.5时,气隙特性可达3mm

    据数据显示,2002年全球汽车传感器的市场规模为70.1亿美元,预计到2005年将达到85.2亿美元,年平均增长率为6.7%;全球2002年汽车传感器的市场需求量为10.38亿只,预计到2005年将达到12.83亿只,年平均增长率为7.3%。和全球范围传感器产业相比,国内汽车传感器尚未形成独立的产业,仍然依附于汽车仪表企业。自20世纪80年代以来,国内汽车仪表行业引进国外的先进技术及与之相配套的传感器生产技术,基本满足了国内小批量、低水平车型的配套需求。众多轿车、轻型车及部分载货车中采用新的电子产品,需要大批量、高水平的汽车传感器,但国内现有最高水平的汽车传感器产品比国外同类产品落后10多年,每年要进口50万套以上的高性能汽车传感器。而伴随着国内汽车产量的迅速增长,今后几年国内汽车工业对传感器及其配套变送器和仪表的需求亦将大大增加。实现汽车传感器的国产化势在必行。

    汽车传感器作为汽车电子控制系统的信息源,是汽车电子控制系统的关键部件,也是汽车电子技术领域研究的核心内容之一。汽车传感器对温度、压力、位置、转速、加速度和振动等各种信息进行实时、准确的测量和控制。衡量现代高级轿车控制系统水平的关键就在于其传感器的数量和水平。今天的汽车,传感器已是无处不在。一辆国内普通家用轿车上大约安装了近百个传感器,而豪华轿车上的传感器数量多达200只。


 
 
更多>同类新闻资讯
推荐图文
推荐新闻资讯
点击排行

新手指南
采购商服务
供应商服务
交易安全
关注我们
手机网站:
新浪微博:
微信关注:

周一至周五 9:00-18:00
(其他时间联系在线客服)

24小时在线客服