算力如何让AI+遥感翻过三个山坡

   2020-03-11 工业品商城236
核心提示:在比赛中,由来自中国科学院空天信息创新研究院赵忠明、孟瑜研究员团队的邓毓弸、节永师、张懿、陈静、刘文雅组成的的机智队获得本次大赛的特等奖,而他们所选择的赛题就是遥感图像变化检测。  遥感图像变化检测可以对同一地点的不同时相数据进行变化检测处理,在资源和环境监测、地理国情监测、自然灾害评估等领域具有高
     在比赛中,由来自中国科学院空天信息创新研究院赵忠明、孟瑜研究员团队的邓毓弸、节永师、张懿、陈静、刘文雅组成的的“机智队”获得本次大赛的特等奖,而他们所选择的赛题就是遥感图像变化检测。
  遥感图像变化检测可以对同一地点的不同时相数据进行变化检测处理,在资源和环境监测、地理国情监测、自然灾害评估等领域具有高度的实用价值。目前遥感图像变化检测的前沿算法在数据层面以及算法设计层面均具有一定局限性,导致算法在实际应用时效率低下。机智队的解决方案是应用将近两年来AI中非常火热的少样本学习,在数据样本相对不太丰富的前提下,尽可能通过迁移学习和样本泛化,提升数据的利用效率。终机智队的模型在精度和效率上都表现优异,获得了整场比赛的特等奖,也证实了AI与遥感之间无限的契合空间。
  其实细细看来本次比赛的几个单元设置,我们可以发现AI之于遥感的产业价值,正在被越来越多人认知。
  在很长一段时间内,遥感技术捕捉到的信息都应用于气象、环境、地质资源、农业林业等等领域的研究与观测之中。实际遥感作为一种能够越过地理障碍对目标进行远距离测探的技术,所累积下的图像资源对于很多行业都有利用价值。但很多时候遥感图像的分析和观测还需要专家亲自参与,人力问题成了遥感图像难以被更多产业利用的关键。
  这时通过AI技术替代人力,直接将遥感图像数据转化成可直接应用于产业的方法论工具,自然就成为了打通遥感技术产业价值的关键秘钥。
  像是遥感卫星视频跟踪这一赛题,就将汽车、飞机、火车、轮船等交通工具作用跟踪对象,这一技术对于智慧物流、智慧交通等等领域都有不小的应用价值。而在遥感图像语义分割赛题中,主办方提供了包含15种典型土地利用类型的图像数据,对于这些数据的分析结果,对于智慧城市中的城市规划建设也有很高的应用价值。获得特等奖的机智队,他们提出的技术创新如果应用到AI防灾等领域之中,也能帮助遥感技术更好地发挥作用,对于灾害情况进行的分析甚至预测。
  我们注意到,机智队在终推理环节时将计算任务分为了两部分,一部分设置在云端,另一部分则应用了边缘计算。这种分布式计算极大地提升了模型的推理效率。背后提供支持的,显然是华为为竞赛提供的Atlas 200 DK AI套件。这一套件通过外围接口释放出了华为Ascend 310芯片的强劲算力,更拥有快速搭建、便于迭代的特征,方便参赛尽快熟悉上手,并且在不断调整策略时可以实现算法的快速更新迭代,让参赛者无需在模型与硬件之间的对接上浪费时间。
  在这一案例中我们也能发觉,在AI与遥感结合的产业逻辑中,算力这一元素起到的作用正在越来越大。
  例如,算力在哪,AI+遥感就在哪。
  处理遥感图像,本身就意味着海量的计算需求出现。能否满足不同的计算需求,也意味着AI+遥感能否潜入更多场景。例如在中低空遥感领域,有很多追踪类的任务,像是追踪灾害蔓延轨迹,或是追踪野生动物。这种时间紧任务重的计算工作,就考验着无人机、摄像头等等终端设备中能否搭载AI算法实现实时识别追踪,也就考验着终端的计算能力。
  又比如,算力有多普惠,AI+遥感就有多普惠。
  在AI时代我们可以深刻的感觉到算力如同一种货币,AI任务的完成需要多少成本都是明码标价的。但从产业层面来讲,一定要在引入AI+遥感的成本和收益之中找到平衡、找到拐点,才能挖掘出AI+遥感的应用价值。换句话说,不断降低应用算力的门槛和成本,才能让更多产业应用上AI+遥感。
  后还有,算力生态有多完善,AI+遥感的生态就有多完善。
  当AI赋能遥感,帮助遥感进入产业化应用时,也意味着遥感图像将要成为企业所处理众多数据中的一种。遥感图像数据想要融入整体技术架构之中,需要让遥感数据能够在储存、传输和处理上与企业整体业务进行配合。而这也往往考验着企业是否拥有一个完善的算力生态,来分布处理不同类型的数据,使得不同计算模式互相配合。换句话说,AI+遥感的应用能否走向常态化,还要看算力生态是否足够完善。
  当算力帮助AI+遥感翻过这三个山坡后,我们一定能看到遥感技术在更多产业中散发耀眼的光芒。
 
 
 
更多>同类新闻资讯
推荐图文
推荐新闻资讯
点击排行

新手指南
采购商服务
供应商服务
交易安全
关注我们
手机网站:
新浪微博:
微信关注:

周一至周五 9:00-18:00
(其他时间联系在线客服)

24小时在线客服